Pioneering vaccines that transform lives.

Immunomic Therapeutics, Inc.

Neoantigen Vaccine Platform

Executive Summary

Executive Summary

Neoantigen Vaccine Platform

- Immunomic Therapeutics is developing novel investigational immunotherapies to treat immunology and oncology diseases based on LAMP-Vax technology
- Potential for LAMP vaccines:
 - Create polyfunctional immune responses
 - Induce antigen-specific Th1-biased TILs at tumor site and activate CD8+ T-cells
 - Th1 CD4+ T-cell activity is believed to be part of effective immune responses to cancer
- ITI solves two challenges in neoantigen vaccine development
 - CD4+ T-cells are an important component of natural immune responses to neoantigens
 - Most current vaccine technologies focus primarily on generation of CD8+ T-cells
 - Manufacturing is the critical bottleneck in commercial feasibility
 - ITI has developed workflows that could release vaccine in 12-15 days

Competitive Landscape

Benchmarking: BioNTech's Genentech Collaboration

Competitors in Neoantigen Vaccine Development

Timeline of Trials

			2014		2015		2016		2017		2018		2019	
Product(s)	Company	Indication	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2
IVAC	BioNTech	Melanoma	P1, N=15; NCT02035956											
IVAC	BioNTech	GBM		P1, N=16; NCT02149225										
Peptide	Dana-Farber	GBM	P1, N=16; NCT02287428											
pDNA	Washington U	TNBC	P1, N=15; NCT02348320						20					
Peptide	Washington U	GBM	P1, N					, N=1	10; N	NCT02510950				
Peptide	MD Anderson	Pancreatic						P1	, N=4	40; N	CT02	6009	49	
IVAC	BioNTech	TNBC	P1, N=30; NCT02316457											
Peptide	Immatics	Leukemias	P2, N=56; NCT02802943											
NEO-PV-01 + Nivo	Neon	Bladder	P1, N=90; NCT02897765											
AutoSynVax	Agenus	Solid Tumors									, N=2 02992	,		
Peptide + Pembro	Washington U	NSCLC									P1 NCT	, N=2 0316	•	
pDNA + Imfinzi	Washington U	TNBC									P1 NCT	, N=2 0319	•	

MHC-II Targeted Antigen Presentation

Key Issue for Development of Anti-tumor Vaccines

1. Tumor-related

- Insufficient tumor antigen expression
- Loss of MHC class I expression by tumor
- Production of immunosuppressive factors for T and B cells

2. Immune cells-related

- Insufficient lymphocyte penetration into the tumor tissue
- Lack of T cell help
 - Insufficient MHC-II-restricted antigen presentation
 - Insufficient TH triggering
- Lack or insufficient CTL activity
 - Insufficient MHC-I-restricted antigen presentation
 - Insufficient support by TH cells
 - Scarce lytic activity
- Extrinsic functional blocking of T cells
 - Regulatory and suppressor cells
 - Inhibitory cytokines

Major elements influencing tumor escape from adaptive immune recognition & destruction

Neoantigen Vaccines with LAMP-Vax

- Other groups have established that neoantigen-targeted vaccines can be designed, manufactured and administered to patients in a clinically relevant time frame
- Neoantigen selection determined by algorithms
 - Three week process: one week for whole exome sequencing, another for validation of epitope presentation and one more for immunogenicity assays
- Once neoantigens have been selected, choosing the right vaccine modality is critical
- Type of immune response generated by vaccination:
 - Th1 immune response to neoantigens correlated with improved outcomes
 - LAMP-Vax generates Th1-biased response
- Vaccine manufacturing time frames:
 - Design to QA-released product in less than 8 weeks
 - LAMP-Vax manufacturing can theoretically be completed in 7 weeks
- Ability to target multiple neoantigens in single product
- LAMP-Vax enables these critical design criteria

Manufacturing of Plasmid DNA

Timeline Comparison: Traditional Large-Scale vs. ITI Neoantigen Processes

LAMP-Vax Focused Strategy in Oncology

Comprehensive Vaccine Approaches Currently Being Tested

Antigen Categories & Programs							
Viral Antigens	Viral Antigens Neo Antigens						
Cancers caused by viruses or where viruses are reactivated	LAMP-Vax to: Deliver hyper- personalized vaccines Quick TAT, high interest area.	Known & established cancer antigens, common targets w/ novel approach					

Phase I available, Phase II underway, new animal data in progress

Data in animal models currently being generated inhouse & in collaborations. Will be available Q2/3 2017

Clinical data on approach available

New animal model data available, more in by Q2 2017

Approaches in house and under collaboration tested in models & humans in multiple tumors Platform dev in parallel supports applications: bioinformatics, delivery, nanoparticles, adjuvants

Sia Anagnostou

Sr. Director of Corporate Development

Immunomic Therapeutics, Inc.

email: sia@immunomix.com

Tel: 717 327 1822

Headquarters & Lab: Rockville, MD

TEL: 301-968-3501

www.immunomix.com

twitter.com/immunomix

